organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Rong Wen,^a* Zi-Qin Ke,^b Bo Qu^a and Ming Li^a

^aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, and ^bDepartment of Chemistry, Xinjiang Normal University, Urumuqi, 830054, People's Republic of China

Correspondence e-mail: wenlirong@126.com

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.051 wR factor = 0.156 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 3-[(1,5-dimethylpyrazol-4-yl)carbonylhydrazino]butyrate

In the crystal structure of the title compound, $C_{12}H_{18}N_4O_3$, the molecules interact through intermolecular $N-H\cdots O$ and $C-H\cdots O$ hydrogen bonds to form dimers, providing stabilization.

Received 28 April 2005 Accepted 25 May 2005 Online 10 June 2005

Comment

Pyrazole and its derivatives represent one of the most active classes of compounds, possessing a wide spectrum of biological activities (Makino, *et al.*,1999), such as antibacterial, fungicidal (Chen *et al.*, 2000), herbicidal (Krishnaiah & Narsaiah, 2002) and insecticidal (Huang, *et al.*, 1996). In the course of our systematic studies aimed at the synthesis of new bioactive compounds, the title compound, (I), was obtained accidentally; its structure is reported here.

The bond distances and angles (Table 1) are as expected for this type of compound. In the crystal structure, centro-

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

View of the title compound, with 35% probability displacement ellipsoids.

Figure 2

The molecular packing of the title compound viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

symmetrically related molecules are linked into dimers by intermolecular N-H···O and C-H···O hydrogen interactions (Table 2 and Fig. 2), thus generating rings of graph-set motifs $R_2^1(7)$ and $R_2^2(8)$ (Bernstein *et al.*, 1995).

Experimental

Ethyl 1,5-dimethyl-1H-pyrazole-4-carboxylate, (1), was synthesized according to the procedure published by Beck & Lynch (1987). 1,5-Dimethyl-1H-pyrazole-4-carbohydrazide, (2), was prepared by the reaction of hydrazine hydrate with (1). A mixture of (2) (2 mmol, 0.308 g) and ethyl acetoacetate (2 mmol, 0.260 g) in ethanol (20 ml) was refluxed for 4 h (monitored by thin-layer chromatography). The mixture was cooled and the title compound was obtained by filtration. Single crystals suitable for X-ray diffraction studies were isolated by recrystallization from ethanol.

> Mo $K\alpha$ radiation Cell parameters from 2468 reflections

 $\theta = 2.2 - 21.2^{\circ}$ $\mu = 0.09~\mathrm{mm}^{-1}$

T = 293 (2) K

Prism colorless

 $0.48 \times 0.42 \times 0.18 \ \mathrm{mm}$

Crystal data

$C_{12}H_{18}N_4O_3$
$M_r = 266.30$
Orthorhombic, Pbca
a = 11.5212 (18) Å
b = 7.9018 (12) Å
c = 30.551 (5) Å
V = 2781.3 (8) Å ³
Z = 8
$D_x = 1.272 \text{ Mg m}^{-3}$

Data collection

Bruker APEX II CCD area-	2452 independent reflections
detector diffractometer	1751 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.034$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 13$
$T_{\min} = 0.956, T_{\max} = 0.983$	$k = -9 \rightarrow 9$
18790 measured reflections	$l = -36 \rightarrow 36$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0744P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.051$	+ 1.2421P]
$vR(F^2) = 0.156$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.99	$(\Delta/\sigma)_{\rm max} < 0.001$
452 reflections	$\Delta \rho_{\rm max} = 0.37 \text{ e } \text{\AA}^{-3}$
75 parameters	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
I atoms treated by a mixture of	
independent and constrained	
refinement	

Table 1

F

Selected geometric parameters (Å, °).

N1-C1	1.311 (3)	N4-C7	1.274 (3)
N1-N2	1.359 (3)	C1-C5	1.403 (3)
N2-C4	1.336 (3)	C4-C5	1.396 (3)
N3-N4	1.388 (2)		
C1-N1-N2	104.3 (2)	N2-C4-C5	106.15 (19)
C4-N2-N1	113.01 (19)	C4-C5-C1	104.0 (2)
N1-C1-C5	112.5 (2)		

Table 2		
Hydrogen-bond g	eometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N3-H3D\cdotsO1^{i}$ $C8-H8A\cdotsO1^{i}$	0.87 (2) 0.96	2.05 (2) 2.56	2.901 (3) 3.205 (3)	168 (2) 124
Symmetry code: (i) -	r + 2 - v - 7 +	1		

Symmetry code: (i) -x + 2, -y, -z + 1.

The H atom associated with N3 was located in a difference Fourier map and refined with the N-H distance restrained to 0.086 (2) Å and with $U_{iso}(H) = 1.2U_{eq}(N)$. All other H atoms were placed in calculated positions, and included in the final cycles of refinement using a riding model (C-H = 0.93-0.97 Å), with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(C_{methyl}).$

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

This project was supported by the Natural Science Foundation of Shandong Province (grant No. Y2003B01).

References

Beck, J. R. & Lynch, M. P. (1987). J. Heterocycl. Chem. 24, 693-695.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Chen, H. S., Li, Z. M. & Li, J. F. (2000). Chem. J. Chin. Univ. 21, 1520-1523.

Huang, R. Q., Song, J. & Feng, L. (1996). Chem. J. Chin. Univ. 17, 1089-1091. Krishnaiah, A. & Narsaiah, B. (2002). J. Fluorine Chem. 115, 9-11.

Makino, K., Kim, H. S. & Kurasawa, Y. (1999). J. Heterocycl. Chem. 36, 321-332.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.